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Introduction I

Let us start today’s lecture by asking the following.

Question
Does probability help to design efficient algorithms?

At first glance, this question may sound strange. We are very
much used to design deterministic algorithms or to write
deterministic programs.
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Introduction II

Looking at all the usual algorithms we know, we can say that
an algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

The Magic of Probability c©Thomas Zeugmann



Introduction The Problem Solution via Randomization End

Introduction II

Looking at all the usual algorithms we know, we can say that
an algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

The Magic of Probability c©Thomas Zeugmann



Introduction The Problem Solution via Randomization End

Introduction II

Looking at all the usual algorithms we know, we can say that
an algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

The Magic of Probability c©Thomas Zeugmann



Introduction The Problem Solution via Randomization End

Introduction II

Looking at all the usual algorithms we know, we can say that
an algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

The Magic of Probability c©Thomas Zeugmann



Introduction The Problem Solution via Randomization End

Introduction II

Looking at all the usual algorithms we know, we can say that
an algorithm is a computation method having the following
properties.
(1) The instruction is a finite text.
(2) The computation is done step by step, where each step

performs an elementary operation.
(3) In each step of the execution of the computation it is

uniquely determined which elementary operation we have
to perform.

(4) The next computation step depends only on the input and
the intermediate results computed so far.

The Magic of Probability c©Thomas Zeugmann



Introduction The Problem Solution via Randomization End

Introduction III

If probability should help, then we have to replace Property (3)
above by allowing instructions of the following type:

Flip a coin. If “head,” goto i else goto j .

Such a replacement directly implies that a program may have
many different computations when run on the same input. So,
on some runs, the program may fail to achieve its goal, and on
some runs, it may succeed. However, we shall make sure that
the program either succeeds or fails to achieve its goal.

But in general, we have no way to tell which of these two cases
did actually happen.
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Introduction IV

Let us recall the basic definition of probability. Classically, one
defines the probability of an event to be the ratio of favorable cases
to all cases.

Example 1
Let us consider a fair die having the usual six possible
outcomes 1, 2, 3, 4, 5, 6.
We consider the event that we throw an even number. Then the
favorable cases are 2, 4, 6.
So, the probability to throw an even number is 3/6 = 1/2.

It should be mentioned that this definition only works if all
elementary events have the same probability. Therefore, we
required our die to be fair.
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Introduction V

So, in our lecture we shall ensure that each run of the
probabilistic algorithm has the same probability. We shall
achieve this goal by allowing only one random choice at the
first stage of the algorithm. All other stages (or steps) must be
deterministic.

Then our design of a probabilistic algorithm should ensure that
the “overwhelming” number of runs is successful.

Now, it is time to present the problem we wish to study. This
problem is taken from Juraj Hromkovič’s book Algorithmic
Adventures, From Knowledge to Magic.
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The Problem I

Suppose we have two computers C1 and C2 that are very far
apart. Nevertheless, we want to have on both computers the
same huge database. Initially, on both computers we have the
same database. However, the database evolves over time and
every new datum is sent to both computers.
So, the changes are to be performed simultaneously on both
computers, e.g., incorporating newly discovered genome
sequences into both databases.
From time to time we wish to check whether or not both
computers do have the same database. In order to simplify the
presentation, we consider the contents of the databases of C1
and C2 as a sequence of bits, i.e., computer C1 has
x = x1x2 · · · xn−1xn and computer C2 has y = y1y2 · · ·yn−1yn.
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The Problem II

Thus, by using a communication channel (a network) between
C1 and C2, we have to verify whether or not x = y (see the
figure below).

communication channel
computer C2

memory

computer C1

memory
x1x2 · · · xn−1xn y1y2 · · ·yn−1yn

Figure 1: The verification task.

To solve this task one has to design a communication protocol.
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The Problem III

We measure the complexity of the communication by counting
the number of bits exchanged between C1 and C2.
The bad news are that any deterministic communication
protocol cannot be better (on most inputs) than to exchange n

bits.
This is, of course, also the trivial solution.

Suppose that we have n = 1016 (which is roughly the memory
size of 25 000 DVDs). Exchanging such an amount of bits over
the internet without making any error is almost unrealistic
given current technology. And the communication complexity
is too high. If we can transmit 107 many bits per second, it will
take approxiamately 31 years.
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The Problem IV

For the remaining part of the talk, it is advantageous to interpret
the sequences x = x1x2 · · · xn−1xn and y = y1y2 · · ·yn−1yn,
xi, yi ∈ {0, 1}, i = 1, . . . , n, as numbers. That is

num(x) =

n∑
i=1

2n−i · xi , and

num(y) =

n∑
i=1

2n−i · yi .

Example 2

num(10001) = 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 17 ,
num(11111) = 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 31 .
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The Problem V

Obviously, we have x = y if and only if num(x) = num(y). We
should also note that

0 6 num(x) 6 2n − 1 , and
0 6 num(y) 6 2n − 1 .

So, these numbers are huge.

We need the following notations. For every positive integer
m > 2 we set

PRIM(m) = {p | p is a prime and p 6 m} , and
Prim(m) = |PRIM(m)| ,

where |PRIM(m)| denotes the number of elements in the set
PRIM(m).
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The Problem VI

In the following we denote by r = a mod b the remainder of
the division a : b.

Example 3
Let a = 17 and b = 5; then we can write

17 = 3 · 5 + 2 ,

and therefore we obtain 2 = 17 mod 5.

Now we are in the position to present our randomized
communication protocol for the comparison of num(x) and
num(y).
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The RCP WITNESS I

The randomized communication protocol WITNESS
given: Computer C1 and n bits x1x2 · · · xn

Computer C2 and n bits y1y2 · · ·yn

Phase 1: C1 chooses uniformly at random a prime p from
PRIM(n2).

Phase 2: C1 computes the integer

s = num(x) mod p

and sends s and p in binary representation to C2.
Phase 3: After reading s and p, the computer C2 computes

q = num(y) mod p .

If q , s, then C2 outputs “not equal.”
If q = s, then C2 outputs “equal.”
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The RCP WITNESS II

Example 4
Let x = 01111 and y = 10110. Hence, n = 5 and

num(x) = 0 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20 = 15 ,
num(y) = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 22 .

Also, n2 = 25 and PRIM(25) = {2, 3, 5, 7, 11, 13, 17, 19, 23}.
Assume that in Phase 1 the prime 5 has been chosen uniformly
at random.
Then in Phase 2 the computer C1 computes 0 = 15 mod 5 and
sends 0 and 101 to C2.
In Phase 3, the computer C2 computes 2 = 22 mod 5 and thus
outputs “not equal.”
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The RCP WITNESS III
Note that in our example the output of C2 is for all primes from
PRIM(25) “not equal” except for p = 7; here we obtain “equal.”
Next, we analyze the communication cost of RCP WITNESS. As
already stated, we have num(x), num(y) ∈ {0, 2n − 1}.
We have to send two numbers s and p which are by
construction less than n2. For representing such numbers in
binary we need

dlog2 n2e 6 2 · dlog2 ne
many bits. Thus, we have to send at most 4 · dlog2 ne many bits.

What does this mean for n = 1016? The best deterministic
protocol must send 1016 many bits.
Our RCP WITNESS works within

4 · dlog2 1016e 6 4 · 16dlog2 10e = 256

many communication bits.
The Magic of Probability c©Thomas Zeugmann
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The RCP WITNESS IV

Clearly, 256 many communication bits and 1016 many
communication bits are incomparable in terms of the
communication cost.
For this unbelievable large saving of communication cost we pay
by losing the certainty of always getting the correct result.

Thus, the remaining task is to ask the following.

Question
How large is the degree of unreliability?

To answer this question, we have to compute the so-called error
probability.
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The RCP WITNESS V

We say that a prime is good for (x, y) if it leads to the correct
output in the RCP WITNESS.
Otherwise, we say that a prime is bad for (x, y).

In our example, 7 was bad for (01111, 10110) and all other
primes in PRIM(25) were good for (01111, 10110).

Since each prime from PRIM(n2) has the same probability to be
chosen, that means we have to estimate

ErrorRCPW(x, y) =
the number of bad primes for (x, y)

Prim(n2)
.
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The RCP WITNESS VI

So, we have to show that ErrorRCPW(x, y) is small for every
instance (x, y) of our identity problem (see Figure 2).

bad
primes
for (x, y)

good primes for the

input instance (x, y)

Figure 2: The error probability.

So, we need a bit more mathematics at this point.
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The RCP WITNESS VII

One of the deepest and most important discoveries in number
theory is that for all m > 67 we have

Prim(m) >
m

ln m
,

where ln m denotes the natural logarithm of m. This is known
as the Prime Number Theorem and it was only proved in 1896
independently by Hadamard and de la Vallée Poussin.

Therefore, for all n > 9 we know that

Prim(n2) >
n2

2 · ln n
.

Now, it is best to make the following case distinction.
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The RCP WITNESS VIII

Case 1. x = y

Since x = y, we conclude that num(x) = num(y), and hence

s = num(x) mod p = num(y) mod p = q

for all p ∈ PRIM(n2).

That is, in this case we have ErrorRCPW(x, y) = 0 for all strings x

and y such that x = y.

So, our RCP WITNESS can only make an error if x , y.
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The RCP WITNESS VIII
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The RCP WITNESS IX

Case 2. x , y

Let p be a bad prime for (x, y). Then we have

s = num(x) mod p = num(y) mod p = q

Thus, s = q and we can write

num(x) = hx · p + s

num(y) = hy · p + s .

Without loss of generality we assume num(x) > num(y) and
by subtracting the latter two equation, we obtain

diff(x, y) = num(x) − num(y) = (hx − hy) · p ,

that is, a bad prime must divide diff(x, y).
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The RCP WITNESS X

We know that diff(x, y) < 2n and that every prime pi > i,
where pi is the ith prime number dividing diff(x, y),
i = 1, . . . , k. Thus, we obtain

diff(x, y) > p1 · p2 · . . . · pk > 1 · 2 · . . . · k
= k! .

Hence, we arrive at the condition 2n > k!. Finally, n! > 2n for
n > 4 and thus k < n must hold.
So, we have seen that at most k 6 n − 1 primes from PRIM(n2)

could be bad.
This allows us to upperbound the error probability.

ErrorRCPW(x, y) =
the number of bad primes for (x, y)

Prim(n2)

6
n − 1

n2/ ln n2 6
2 · ln n

n
.
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Concluding Remarks I

So, in our example the error probability to output “equal” for
sequences x and y with x , y is upper bounded by (2 · ln n)/n.
For n = 1016, this yields

0.36841
1014 ,

which is amazingly small.

Even better, if we look into the future and consider even bigger
databases, then the error probability will be even smaller.
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Concluding Remarks II

The results obtained allow for a further improvement. As we
have seen, if x = y then our RCP WITNESS is correct with
certainty. All uncertainty is in case that x , y. Here we may
wrongly output “equal.” However, if we have found a prime
p ∈ PRIMES(n2) witnessing that x , y then the result is again
certainly correct.

Now, if we chose ` many primes independently at random from
PRIMES(n2) instead of just one, then the probability not to find
a witness for x , y is (

2 · ln n

n

)`

.

For our n = 1016 this gives for ` = 10 the upperbound

0.4714
10114 to still make an error .
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Concluding Remarks III

What we have to pay in terms of communication costs for this
further improvement?

In fact, not much. Instead of sending two numbers s and p in
Phase 2, now we have to communicate 20 numbers s1, . . . , s10
and p1, . . . , p10. That is, instead of 256 bits we now have to
communicate 2560 many bits.

“There are things, that seem unbelievable to most people who
have not studied mathematics.”

Archimedes (287 - 212 bef. Chr.)
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Concluding Remarks IV

They call it

M A G I C

We call it

S C I E N C E
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Concluding Remarks IV
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Thank you!
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